Please select your home edition
Edition

Pollock spawning season may shift due to climate

by NOAA Fisheries 27 Nov 2018 05:53 UTC
Successful year classes of pollock are largely determined by survival of early life stages, which depends on the environmental conditions they encounter due to spawn timing © NOAA Fisheries

A new study using an unprecedented 32-year data series reveals that spawning time of Alaska pollock-- target of the Nation's biggest fishery-- varied by as much as three weeks over the past three decades in the Gulf of Alaska.

The new study found clear evidence that the changes were driven by both climate and fishing.

Changes in spawn timing have major ecological and management implications. Timing is critical to survival of newly hatched fish as it determines the conditions they encounter. Many marine fish, like pollock, are adapted to spawn in time for offspring to meet the rapid increase of their plankton prey in spring. If they arrive too early, there may not be enough food; if they arrive too late, the young fish will have less time to grow and will be small compared to their predators and competitors.

Because most mortality happens during the first few weeks of life for pollock, changes in spawn timing that affect larval survival can strongly affect recruitment success--how many fish are available to the fishery two or three years later.

"To effectively monitor and manage pollock populations, managers need to understand what causes changes in spawn timing. With ongoing warming of the world's oceans,we need to know how changing climate conditions interact with other processes, like harvesting, to influence spawning time," says Lauren Rogers, the NOAA Fisheries biologist who led the study.

Toward that end, Rogers' team investigated how pollock spawn timing has shifted over warm and cool periods and large shifts in age structure in the Gulf of Alaska.

"The strength of our study is comprehensive information from an amazing 32-year time series of larval fish size, age, and abundance, validated with maturation data from spawning females, and combined with at-sea process studies, laboratory experiments, and age readings. Using these resources, we were able to test for effects of climate and age structure on both mean spawn timing and duration, and forecast spawn timing under different scenarios of warming and fishing mortality," Rogers says.

The study produced two major findings

Warmer temperatures mean earlier and longer spawning--To a point

Climate clearly drives variation in spawn timing of walleye pollock, with warmer temperatures leading to an earlier and longer spawning period. However, above a threshold temperature, increased warming had no additional effect on spawn timing.

"Because temperatures are projected to be consistently above that threshold with ongoing ocean warming, our results suggest that pollock spawn timing will become more stable in the future," says Rogers.

Older, bigger mothers spawn earlier and over a longer duration

An older spawning population started spawning earlier and over a longer duration than a population of predominantly young spawners, highlighting the importance of older mothers.

This is where fishing comes in: harvesting leads to a younger, smaller population over time. In general, increased mortality reduces the mean age of a population, and this effect is strengthened if older individuals are targeted through size selective harvesting. Besides direct effects of harvesting on age structure, fishing may cause evolutionary change by selecting for reproductive maturation at an earlier age or smaller size.

"Our models suggest that changes in pollock age structure associated with sustainable fishing can shift the mean spawning date to 7 days later and shorten the spawning season by nine days compared to an unfished population, independent of climate conditions." says Rogers.

That shift could cause young fish to arrive out of sync with their food in two ways: by decoupling the arrival of first feeding fish larvae from temperature-driven changes in plankton production; and by reducing the window over which young fish are delivered into the ecosystem, thus increasing the risk of mismatch with plankton production.

Spawn timing and the future

"Our models suggest that climate change will lead to an earlier, stabilized spawning season in the future." Rogers says. "What we don't know is how that will affect synchrony of first-feeding larvae with production of their zooplankton prey in spring."

Rogers hopes future research will answer that question. "We are looking at ways to evaluate match-mismatch with prey by comparing prey and larval fish production." She also hopes to develop the model into a practical forecasting tool. "If we could use climate and age composition data to predict spawn timing 3-4 months ahead, the forecast could be used to make sure surveys are optimally timed to coincide with peak spawning periods."

Additional Resources:

Related Articles

New study sheds light on Alaska's mysterious shark
“One-stop shop” for information critical to conserving the highly vulnerable Pacific sleeper shark Researchers created a "one-stop shop" for information critical to conserving the highly vulnerable Pacific sleeper shark. Posted on 21 Apr
Fisheries Economics of the United States Report
A summary of the economic performance of U.S. marine fisheries The annual report provides a summary of the economic performance of U.S. marine fisheries and related industries and their important role in our nation's economy. Posted on 20 Apr
Influence of climate on young salmon
Providing clues to future of world's largest sockeye run The world's largest run of sockeye salmon begins in Bristol Bay river systems that flow into the Bering Sea. There young salmon face a crucial bottleneck: they must find good food and conditions so they can store enough fat to survive first winter at sea. Posted on 12 Apr
Revisions to the Endangered Species Act
Finalized by NOAA Fisheries & the U.S. Fish and Wildlife Service The agencies finalized a series of revisions to the joint regulations to improve the agencies' ability to conserve and recover listed species. Posted on 5 Apr
Emergency response effort for endangered Sawfish
A project to rescue and rehabilitate smalltooth sawfish NOAA Fisheries and partners are initiating a project to rescue and rehabilitate smalltooth sawfish affected by an ongoing mortality event in South Florida. Posted on 2 Apr
Diverse habitats help Salmon weather change
Chinook in three creeks may be vulnerable alone, but resilient together Restored salmon habitat should resemble financial portfolios, offering fish diverse options for feeding and survival so that they can weather various conditions as the climate changes, a new study shows. Posted on 22 Mar
Enhancing Wild Red King Crab populations
An important commercial and subsistence fishery species in Alaska Scientists examine effects of release timing and size at release on survival of hatchery-reared red king crab. Posted on 18 Mar
Oyster Shell recycling key to coastal protection
Gulf Coast partners will expand efforts to restore oyster populations With $5 million in NOAA funds, Gulf Coast partners will expand efforts to restore oyster populations, protect vanishing land, and reconnect communities to their coastal heritage. Posted on 9 Mar
Cold Water Connection campaign reopens rivers
For Olympic Peninsula Salmon and Steelhead With $19 million in NOAA funds, nonprofit and tribal partners plan to remove 17 barriers blocking fish passage on critical spawning rivers originating in Olympic National Park, Washington. Posted on 24 Feb
Sacramento river chinook salmon remain endangered
Recent progress offers hope for recovery but serious threats continue to affect species Partners have pulled together to support the recovery of endangered Sacramento winter-run Chinook salmon in the last few years. However, the species still faces threats from climate change and other factors. Posted on 9 Feb