Please select your home edition
Edition
Pantaenius FBW Asset 728x90

150-million-year old, piranha-like specimen is earliest known flesh-eating fish

by Prof David Bellwood / Dr Martina Kölbl-Ebert 28 Oct 2018 06:41 UTC

An international team of researchers have described a remarkable new species of fish that lived in the sea in the time of the dinosaurs in the late Jurassic about 150 million years ago.

The new species of bony fish had teeth like a piranha, which the researchers from the ARC Centre of Excellence for Coral Reef Studies (Coral CoE, Australia) and Jura-Museum Eichstätt (Germany), suggest they used as piranhas do: to bite off chunks of flesh from other fish.

As further support for that notion, the team also found the victims – other fish that had apparently been nibbled on – in the same limestone deposits in South Germany (the quarry of Ettling in the Solnhofen region) where this piranha-like fish was found.

"We have other fish from the same locality with chunks missing from their fins," said Prof David Bellwood of Coral CoE at James Cook University.

"This is an amazing parallel with modern piranhas which feed predominantly not on flesh but the fins of other fishes. It's a remarkably smart move as fins regrow, a neat renewable resource. Feed on a fish and it is dead; nibble its fins and you have food for the future."

The newly described fish is part of the world famous collections in the Jura-Museum in Eichstätt. It comes from the same limestone deposits that contained the first feathered proto-bird known as Archaeopteryx.

Careful study of the fossilized specimen's well preserved jaws revealed long, pointed teeth on the exterior of the vomer, a bone forming the roof of the mouth, and at the front of both upper and lower jaws. Additionally, there are triangular teeth with serrated cutting edges on the pre-articular bones that lie along the side of the lower jaw.

The tooth pattern and shape, jaw morphology and mechanics suggest a mouth equipped to slice flesh or fins, the international team of researchers report. The evidence points to the possibility that the early piranha-like fish may have exploited aggressive mimicry in a striking parallel to the feeding patterns of modern piranha.

"We were stunned that this fish had piranha-like teeth," Dr Martina Kölbl-Ebert of Jura-Museum Eichstätt (JME-SNSB) said.

"It comes from a group of fishes (the pycnodontids) that are famous for their crushing teeth. It is like finding a sheep with a snarl like a wolf. But what was even more remarkable is that it was from the Jurassic."

"Fish as we know them, bony fishes, just did not bite flesh of other fishes at that time. Sharks have been able to bite out chunks of flesh, but throughout history bony fishes have either fed on invertebrates or largely swallowed their prey whole. Biting chunks of flesh or fins was something that came much later," Kölbl-Ebert explained

Or, so it had seemed.

"The new findig represents the earliest record of a bony fish that bit bits off other fishes, and what's more, it was doing it in the sea," Bellwood said, noting that today's piranhas all live in freshwater.

"So when dinosaurs were walking the earth and small dinosaurs were trying to fly with the pterosaurs, fish were swimming around their feet tearing the fins or flesh off each other."

The researchers call the new find a "staggering example of evolutionary versatility and opportunism." With one of the world's best known and studied fossil deposits continuing to throw up such surprises, they intend to keep up the search for even more fascinating finds.

Paper "A Piranha-like Pycnodontiform Fish from the Late Jurassic" is available here.

Related Articles

Sharks almost gone from many reefs
Finding of a massive global study of the world's reefs A massive global study of the world's reefs has found sharks are 'functionally extinct' on nearly one in five of the reefs surveyed. Posted on 25 Jul
Big vegetarians of the reef drive fish evolution
More than 6,000 fish species live on coral reefs across the globe A new study reveals the diets of reef fish dictate how fast different species evolve. The breakthrough adds another piece to the fascinating evolutionary puzzle of coral reefs and the fishes that live on them. Posted on 3 Jun
'Blue boats' rob Pacific reefs
The number of foreign fishing boats caught operating illegally has increased A flotilla of Vietnamese fishing boats with crews suffering in harsh conditions is stripping Pacific coral reefs of seafood as the poaching escalates to become an international human rights and security issue. Posted on 4 Dec 2019
Tracking baby fish for better reef management
Tracking the lives of thousands of tiny baby fish is no easy task A group of Australian scientists has created the world's first computer model that can accurately predict the movements of baby coral trout across the Great Barrier Reef. Posted on 3 Aug 2019
Breaking bread with rivals leads to more fish
Cooperation is key to most successful endeavours Dr Michele Barnes, a senior research fellow from the ARC Centre of Excellence for Coral Reef Studies, is the lead author of study published today that looks at the relationships between competing fishers, the fish species they hunt, and their local reefs. Posted on 7 May 2019
Ocean currents bring good news for reef fish
Study looks at how fish on a bleached coral reef get their food Researchers have discovered some good news for fish populations living on coral reefs hit by climate change. Posted on 25 Apr 2019
Murky water keeps fish on edge
Fish become anxious and more cautious when water quality is degraded by sediment Associate Professor Jodie Rummer, Principal Research Fellow at the ARC Centre of Excellence for Coral Reef Studies, based at JCU, says there is more sediment in coastal waters than ever before. Posted on 24 Dec 2018
Finding Nemo's genes
An international team of researchers has mapped Nemo's genome In a breakthrough study led by the KAUST and the Coral CoE, researchers used high-tech sequencing tools to create one of the most complete genetic maps for the orange clownfish, a common reef inhabitant and star of the Disney movie, Finding Nemo. Posted on 20 Sep 2018
Coral bleaching not limited to shallow depths
2016 coral bleaching on the Great Barrier Reef also affected deep reefs Although deep reefs are often considered a refuge from thermal anomalies caused by global ocean warming, the new research highlights limitations to this role and argues that both shallow and deep reefs are under threat of mass bleaching events. Posted on 7 Sep 2018
Apathy towards poachers widespread
Nearly half of fishers from seven countries had witnessed someone poaching in marine protected areas Dr Brock Bergseth from the ARC Centre of Excellence for Coral Reef Studies led the study. He said poaching is widespread in the world's marine protected areas, and that fishers have the potential to make or break a marine protected area. Posted on 31 Aug 2018
Marina Exchange FOOTER 1